Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 971, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302454

RESUMO

The emergence of exceptional points (EPs) in the parameter space of a non-hermitian (2D) eigenvalue problem has long been interest in mathematical physics, however, only in the last decade entered the scope of experiments. In coupled systems, EPs give rise to unique physical phenomena, and enable the development of highly sensitive sensors. Here, we demonstrate at room temperature the emergence of EPs in coupled spintronic nanoscale oscillators and exploit the system's non-hermiticity. We observe amplitude death of self-oscillations and other complex dynamics, and develop a linearized non-hermitian model of the coupled spintronic system, which describes the main experimental features. The room temperature operation, and CMOS compatibility of our spintronic nanoscale oscillators means that they are ready to be employed in a variety of applications, such as field, current or rotation sensors, radiofrequeny and wireless devices, and in dedicated neuromorphic computing hardware. Furthermore, their unique and versatile properties, notably their large nonlinear behavior, open up unprecedented perspectives in experiments as well as in theory on the physics of exceptional points expanding to strongly nonlinear systems.

2.
Sci Adv ; 9(32): eadh1601, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566648

RESUMO

Spin-waves in antiferromagnets hold the prospects for the development of faster, less power-hungry electronics and promising physics based on spin superfluids and coherent magnon condensates. For both these perspectives, addressing electrically coherent antiferromagnetic spin-waves is of importance, a prerequisite that has been so far elusive, because, unlike ferromagnets, antiferromagnets couple weakly to radiofrequency fields. Here, we demonstrate the detection of ultra-fast nonreciprocal spin-waves in the dipolar exchange regime of a canted antiferromagnet using both inductive and spintronic transducers. Using time-of-flight spin-wave spectroscopy on hematite (α-Fe2O3), we find that the magnon wave packets can propagate as fast as 20 kilometers/second for reciprocal bulk spin-wave modes and up to 6 kilometers/second for surface spin-waves propagating parallel to the antiferromagnetic Néel vector. We lastly achieve efficient electrical detection of nonreciprocal spin-wave transport using nonlocal inverse spin-Hall effects. The electrical detection of coherent nonreciprocal antiferromagnetic spin-waves paves the way for the development of antiferromagnetic and altermagnet-based magnonic devices.

3.
ACS Nano ; 15(6): 9775-9781, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34013720

RESUMO

Multiferroics offer an elegant means to implement voltage control and on the fly reconfigurability in microscopic, nanoscaled systems based on ferromagnetic materials. These properties are particularly interesting for the field of magnonics, where spin waves are used to perform advanced logical or analogue functions. Recently, the emergence of nanomagnonics is expected to eventually lead to the large-scale integration of magnonic devices. However, a compact voltage-controlled, on demand reconfigurable magnonic system has yet to be shown. Here, we introduce the combination of multiferroics with ferromagnets in a fully epitaxial heterostructure to achieve such voltage-controlled and reconfigurable magnonic systems. Imprinting a remnant electrical polarization in thin multiferroic BiFeO3 with a periodicity of 500 nm yields a modulation of the effective magnetic field in the micrometer-scale, ferromagnetic La2/3Sr1/3MnO3 magnonic waveguide. We evidence the magnetoelectric coupling by characterizing the spin wave propagation spectrum in this artificial, voltage induced, magnonic crystal and demonstrate the occurrence of a robust magnonic band gap with >20 dB rejection.

4.
Nano Lett ; 20(1): 306-313, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31809058

RESUMO

The compensated magnetic order and characteristic terahertz frequencies of antiferromagnetic materials make them promising candidates to develop a new class of robust, ultrafast spintronic devices. The manipulation of antiferromagnetic spin-waves in thin films is anticipated to lead to new exotic phenomena such as spin-superfluidity, requiring an efficient propagation of spin-waves in thin films. However, the reported decay length in thin films has so far been limited to a few nanometers. In this work, we achieve efficient spin-wave propagation over micrometer distances in thin films of the insulating antiferromagnet hematite with large magnetic domains while evidencing much shorter attenuation lengths in multidomain thin films. Through transport and magnetic imaging, we determine the role of the magnetic domain structure and spin-wave scattering at domain walls to govern the transport. We manipulate the spin transport by tailoring the domain configuration through field cycle training. For the appropriate crystalline orientation, zero-field spin transport is achieved across micrometers, as required for device integration.

5.
Sci Rep ; 8(1): 13475, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194358

RESUMO

Synchronized nonlinear oscillators networks are at the core of numerous families of applications including phased array wave generators and neuromorphic pattern matching systems. In these devices, stable synchronization between large numbers of nanoscale oscillators is a key issue that remains to be demonstrated. Here, we show experimentally that synchronized spin-torque oscillator networks can be scaled up. By increasing the number of synchronized oscillators up to eight, we obtain that the emitted power and the quality factor increase linearly with the number of oscillators. Even more importantly, we demonstrate that the stability of synchronization in time exceeds 1.6 milliseconds corresponding to 105 periods of oscillation. Our study demonstrates that spin-torque oscillators are suitable for applications based on synchronized networks of oscillators.

6.
Sci Rep ; 6: 30535, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27457034

RESUMO

When fabricating magnetic memories, one of the main challenges is to maintain the bit stability while downscaling. Indeed, for magnetic volumes of a few thousand nm(3), the energy barrier between magnetic configurations becomes comparable to the thermal energy at room temperature. Then, switches of the magnetization spontaneously occur. These volatile, superparamagnetic nanomagnets are generally considered useless. But what if we could use them as low power computational building blocks? Remarkably, they can oscillate without the need of any external dc drive, and despite their stochastic nature, they can beat in unison with an external periodic signal. Here we show that the phase locking of superparamagnetic tunnel junctions can be induced and suppressed by electrical noise injection. We develop a comprehensive model giving the conditions for synchronization, and predict that it can be achieved with a total energy cost lower than 10(-13) J. Our results open the path to ultra-low power computation based on the controlled synchronization of oscillators.

7.
Sci Rep ; 6: 26849, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27241747

RESUMO

The self-synchronization of spin torque oscillators is investigated experimentally by re-injecting its radiofrequency (rf) current after a certain delay time. We demonstrate that the integrated power and spectral linewidth are improved for optimal delays. Moreover by varying the phase difference between the emitted power and the re-injected one, we find a clear oscillatory dependence on the phase difference with a 2π periodicity of the frequency of the oscillator as well as its power and linewidth. Such periodical behavior within the self-injection regime is well described by the general model of nonlinear auto-oscillators including not only a delayed rf current but also all spin torque forces responsible for the self-synchronization. Our results reveal new approaches for controlling the non-autonomous dynamics of spin torque oscillators, a key issue for rf spintronics applications as well as for the development of neuro-inspired spin-torque oscillators based devices.

8.
Sci Rep ; 5: 17039, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26608230

RESUMO

Due to their nonlinear properties, spin transfer nano-oscillators can easily adapt their frequency to external stimuli. This makes them interesting model systems to study the effects of synchronization and brings some opportunities to improve their microwave characteristics in view of their applications in information and communication technologies and/or to design innovative computing architectures. So far, mutual synchronization of spin transfer nano-oscillators through propagating spinwaves and exchange coupling in a common magnetic layer has been demonstrated. Here we show that the dipolar interaction is also an efficient mechanism to synchronize neighbouring oscillators. We experimentally study a pair of vortex-based spin transfer nano-oscillators, in which mutual synchronization can be achieved despite a significant frequency mismatch between oscillators. Importantly, the coupling efficiency is controlled by the magnetic configuration of the vortices, as confirmed by an analytical model and micromagnetic simulations highlighting the physics at play in the synchronization process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...